Complex Variable Meshless Manifold Method for Elastic Dynamic Problems
نویسندگان
چکیده
منابع مشابه
Regularized meshless method for nonhomogeneous problems
The regularized meshless method is a novel boundary-type meshless method but by now has largely been confined to homogeneous problems. In this paper, we apply the regularized meshless method to the nonhomogeneous problems in conjunction with the dual reciprocity technique in the evaluation of the particular solution. Numerical experiments of three benchmark nonhomogeneous problems demonstrate t...
متن کاملElastic-plastic Analysis of Jointed Rock Mass Using Meshless Method
Analysis of rock masses with plenty of weakness planes and joints with numerical methods based on meshes encounters difficulties. In the analysis when even only a few meshes are involved, mesh generation can consume more time and effort compared to the construction and solution of the discrete set of equations. Continuous remeshing of the domain in order to avoid the break down of the calculati...
متن کاملImplicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملMeshless Local Petrov-Galerkin (MLPG) Method for Convection-Diffusion Problems
Due to the very general nature of the Meshless Local Petrov-Galerkin (MLPG) method, it is very easy and natural to introduce the upwinding concept (even in multidimensional cases) in the MLPG method, in order to deal with convection-dominated flows. In this paper, several upwinding schemes are proposed, and applied to solve steady convectiondiffusion problems, in one and two dimensions. Even fo...
متن کاملApplication of the Kudryashov method and the functional variable method for the complex KdV equation
In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2016
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2016/5803457